
Profile-based, Load-Independent Anomaly Detection and Analysis in Performance
Regression Testing of Software Systems

Shadi Ghaith, Miao Wang, Philip Perry and John Murphy
School of Computer Science and Informatics

University College Dublin, Ireland
Email: shadi.ghaith@ucdconnect.ie

Abstract—Performance evaluation through regression testing
is an important step in the software production process. It aims
to make sure that the performance of new releases do not
regress under a field-like load. The main outputs of regression
tests are the metrics that represent the response time of various
transactions as well as the resource utilization (CPU, disk I/O
and Network). In this paper, we propose to use a concept
known as Transaction Profile, which can provide a detailed
representation for the transaction in a load independent man-
ner, to detect anomalies through performance test runs. The
approach uses data readily available in performance regression
tests and a queueing network model of the system under test to
infer the Transactions Profiles. Our initial results show that the
Transactions Profiles calculated from load regression test data
uncover the performance impact of any update to the software.
Therefore we conclude that using Transactions Profiles is an
effective approach to allow testing teams to easily assure each
new software release does not suffer performance regression.

Keywords-application change, transactions, performance
models, regression testing

I. INTRODUCTION

Regression testing is an important step in the development
process of software systems. It aims to make sure a new
version of software performs better, or at least no worse,
than previous versions of the same software [1]. Generally
Performance Teams need to run regression tests on each
release to make sure performance has not regressed. Such
runs apply a workload similar to expected field-like load for
a period of time up to a few hours [2]. A huge amount of
data containing hundreds of performance counters may be
generated by such runs [3].

Each transaction triggers a request that propagates through
the application layers to fulfil the user requirement by return-
ing the appropriate response. Among various performance
counters, the total time spent on all system resources, known
as response time, is one of the key measurements that
the performance regression testing measures and analyses.
Unfortunately, regression testing is usually conducted at a
late stage of the development lifecycle [1] leaving little
time to analyse performance counters to detect performance
problems. Investigating such measurements manually is time
consuming and may not give detailed information about the
cause of the reduced performance to help the engineers to

fix the responsible bugs.
Another key factor in performance regression testing is

the workload applied to the system [4]. Various transactions
applied concurrently by various users, will compete for
the available system resources resulting in queues thus
increasing the response time. At the same time, test teams
may need to execute various runs with different workloads
to emulate various field-like scenarios. Hence, an increase
of the response time can be due to workload variations
rather than being caused by a bug [4]. Therefore, a load-
independent method to detect and analyse bugs in the system
that have caused response time regression would be a useful
tool for the development process.

Figure 1. A Computer System And Its Queue Model.

On the other hand, a computer system can be represented
as a queueing network [5]. It comprises of nodes and
connections between these nodes. Each node corresponds
to a certain hardware (or even software) resource, like CPU,
and a queue. Figure 1 shows an example of a computer
system represented as a queueing network. Transactions are
represented as requests which are initiated by the Users node
and pass through the connections to visit various nodes in the
network. The response time of such transactions is therefore
the sum of time spent in all nodes of the system excluding

Cop
y R

igh
ts 



Users node.
In this paper we propose to use a queueing network

representation of the computer system to analyse the results
of performance regression runs by utilizing the concept
of Transactions Profiles (TP), which can be considered as
a load independent representation of transaction response
time. The main benefit of a TP is to provide an insight on
the performance characteristics of the transaction in order
to detect software anomalies and can only change if the
application actually changes. The TP is load-independent
and can be calculated from the regression test data for a
given load using the queueing network representation of the
system.

II. BACKGROUND INFORMATION

We are applying concepts from the capacity management
and computer modelling fields to the world of anomaly
detection in load testing. In this section we introduce some
of the main concepts from those fields.

A. Transaction Profile

Enterprise applications consist of transactions that visit
various system resources (like CPU, Disk I/O) to fulfil the
users request. Figure 2 depicts the distribution of the time
required to process certain transaction between client PC and
Server and the network.

Figure 2. Time Spent By a Certain Transaction On All System Resources.

The total amount of time required to serve the transaction
on each resource is called service demand. It equals the
number of visits to the resource multiplied by the service
time requirement per visit.

The complete series of service demands for one trans-
action is known as the Transaction Profile (TP). The TP
represents the lower bound value of the response time for
that transaction, or in other words it is the response time
when the transaction is the only one in the system (no
queueing). Accordingly, the TP is considered to be load-
independent representation of the transaction. It can be
visually represented by a horizontal bar that shows each
component of the service demand as shown in Figure 3. In
this example, a TP detail is broken down into CPU and I/O
utilizations on the client and server machines. Although a
software system may comprise thousands of transactions, the

performance analysis usually focussed on a small number of
key transactions that are critical to system performance.

It worths mentioning that the TP does not represent a real
working scenario as no enterprise system is expected to work
in a single user fashion; instead it is just a hypothetical con-
cept that is used with the queueing network representation
of the system to predict performance under varying loads as
will be explained shortly.

Figure 3. TP for the “New Products” Transaction.

B. Modelling Computer Systems as Queueing Networks

A queueing network can be used to represent computer
systems [5]. Each node corresponds to a certain hardware (or
even software) resource. Using the same example previously
discussed in Figure 1 each node consists of one or many
processing units (like CPUs) and a Queue. If a processing
unit is available it processes the request directly otherwise
the request has to wait in the queue. The time to process
a request in a node equals the sum of the time spent in
the queue and the time required by the processing unit. The
queue length may vary as workload varies; hence queue time
is the main factor that determines the overall time required to
serve the request in each node and so the overall transaction
response time. Modelling computer systems by a queueing
network is widely used in performance analysis.

C. TP Usage in Capacity Management

One of the main applications of TP is in the capacity
management of software systems. The goal is to predict
the response times of the various transactions and resources
utilization under load and decide if more hardware or
software resources are required. To do so it is required to
perform the process outlined in Figure 4 which is composed
of the following tasks [5]:

1) Generate the queueing network representation of the
computer system.

2) Determine the TP: It can be obtained by direct mea-
surment using load generator software. Alternatively
it may be calculated by measuring the normal load
response times and resource utilization and calculate
the service demands using techniques, which have
been described in [6] [7].

Cop
y R

igh
ts 



3) For various workloads, solve the model to produce the
corresponding response time and resource utilization.
This can be done with a variety of commercial tools
or open source tools such as the Java Modelling Tool
(JMT) [8].

Figure 4. Process to Predict System Capacity Using TP.

III. NOVEL TP APPROACH

Based on the observation that the TP may reveal some
important performance characteristics of the transaction, we
propose to use the TP as a load-independent indicator of
performance characteristics of transactions within a software
system. As explained above, the TP is independent of the
load applied to the system and it changes only when the
application is modified in a way that affects the performance.
Such changes may be caused by normal on-going develop-
ment tasks like functional bug fixes as well as by adding
new functionalities or modifying existing functionality. The
central premise here is:-

if we infer the TP for two releases from corresponding
regression testing data, then a visual (or automated) com-
parison between the TP of the two releases will highlight
anomalous behaviour caused by software changes.

As shown in Figure 7 the comparison (visual or auto-
mated) between the TP of two successive releases may
uncover anomalies when the new release has a longer TP
time than the previous one. This behaviour can even be
analysed further by looking at the components making up
the time of the TP as shown in Figure 8.

We could measure the TP in a similar way to what is used
in the capacity management as explained above. In this case
a dedicated deployment for the TP measurement needs to
be provided. Such a deployment is usually simpler than the
normal load testing topologies.

Yet we propose calculating the TP from the data readily
available by the normal load test runs. As shown in Figure 4,
it is possible to solve the model knowing the TP and work-
load to obtain the transactions response time and resource
utilizations. However in our case, the input parameters are
the resource utilization and response time, which were the
outputs in Figure 4. As shown in Figure 5, by reverse solving

the model the corresponding TP can be calculated based on
the new set of input parameters for a known workload.

Figure 5. Calculating TP from Regression Test Data.

This concept is not new to the literature and was covered
by some papers already like [6] [7]. Those papers assume
that the queueing network model can be simplified to a
single node. Casale et al [6] have described how to do a
linear regression between resource utilization and workload
(multiple runs with various workloads are required) and
use this relation to calculate the TP. While Kraft et al [7]
have followed a similar approach but uses the response time
instead of the resource utilization.

However, these two approaches would only be suitable
to calculate TP in simple deployments due to the single
node assumption. For a more complicated deployments we
propose to use the open source tool JMT and use a search
based approach to find the TP.

As shown in Figure 6, we propose to solve the model
with an initial TP input (for a known workload), the initial
value can be the TP from the previous run or it can be
measured approximately (by single user test). Else a random
value can be used but this may increase the time required
to converge the search. Then compare the result with the
measured response time and resources utilization to adjust
the input based on the difference. We do so until we get
the value of TP that produces the correct results (measured
resources utilization and response time).

Figure 6. Evaluate TP from Regression Test Data Using JMT.

Our approach requires the testing team to build and
maintain a queueing network representation of the test

Cop
y R

igh
ts 



environment. Such model represents the various hardware
(and even software) resources and their number and specifi-
cations. Nevertheless, changes to such environments are not
as frequent as other factors like the frequency of the test
runs or the workload changes.

IV. INITIAL EXPERIMENTS

To prove the use of TP to detect anomalies in soft-
ware systems we measured the TP for a sample web
application for a selected transaction “New Products”. Our
measurements were conducted using a load generator and
various performance measurement tools like Pefmon and
TCPDUMP. We have measured the TP for two releases of
the software. The first one, release 05, is considered as a
baseline TP. While the second one, release 06, contains
an anomaly known to cause an extra processing in the
Server CPU which increases the response time of the “New
Products” transaction. The goal is to prove that the measured
TP reflects this anomaly both by an increase of the entire
TP time and by showing an increase of the utilization of the
Server CPU.

Figure 7. TP for “New Products”.

The TP for “New Products” is shown in Figure 7 and
we can see that the TP time has regressed in release 06
compared to release 05 from around 0.67 seconds to 0.8
seconds which is around 19.4% increase. Figure 8 can be
used to further investigate the anomaly. It shows that the
Server CPU component of the TP is the major contributor
to the above increase of TP time as it undergoes an increase
of 38%. While the client CPU, Disk and the Server Disk
undergo changes of 5%, 9% and 0% respectively, those can
be ignored given the low contribution to the entire TP time
increase. In this scenario, the performance team needs to
raise a software bug to report a performance regression of
the “New Products” transaction which should include the
information about the increase of Server CPU usage. In other
cases where the new TP has a similar or a shorter time than
the previous release, then no performance regression needs
to be reported.

From this, it is clear that the TP helps in identifying
the transactions with anomalous behaviour by test team and

Figure 8. Components of TP for “New Products” Transaction.

also it gives useful information for analysts and developers
about the component which service demand has significantly
changed causing the TP to regress. This TP is independent
from the load being applied to the system.

For the proof of concept above we measured the TP,
however as explained above in the final solution we plan
to calculate the TP from available load test data as shown
in Figure 6. The initial implementation for this part employs
the First Ascent Hill Climbing [9] search technique. The dif-
ference between the transaction response time and resources
utilization, which are measured and calculated forms the
fitness function that controls the input TP until the output
parameters matches the measured ones.

Initial tests are showing good results for few nodes in the
queueing models, but it is caught by a local optimum for
bigger models. We plan to use different search techniques
like Simulated Annealing [9] to avoid this.

Another experiment was conducted to make sure TP is
really load-independent as per its definition. In this case we
did two different runs on the same software release and same
hardware with two different loads. Then we inferred the TP
from both runs and we verified it is, as expected, the same
in both cases. We omit the details of this experiment due to
space limitation.

V. RELATED WORK

Performance testing of software systems based on the
resource utilisation and response time as a transaction is
executed is a standard performance monitoring technique,
such as the system used in [10].

Industries currently lack a complete solution for the
processing of the results of regression tests [1]. Surprising,
the manual approach has been widely used to analyze the
quality of software systems. However, a manual solution
is usually error-prone and time consuming especially for a
timely release schedule making such a solution not viable.

Statistical techniques are among the first techniques used
to detect anomalies in various fields including regression

Cop
y R

igh
ts 



testing data. Particularly, Statistical Control charts were
examined and some researches [4] [2] have been published
about it. These papers show that Control charts used for
Process Control [3] of industrial systems can be applied
to detect anomalous behaviour of regression tests data.
Another statistical technique is to find a correlation between
performance counters and provide a “confidence” value
defined as the level of how probable that a counter value
will follow a certain related counter(s) value. A confidence
close to 1 denotes a high probability and close to zero if it
is not almost related. So if a confidence is changed between
counters in the current release compared to previous release
an anomaly is raised [11]. Statistical techniques rely on pre-
set thresholds to determine the level at which anomalies
are declared. Determining the appropriate threshold is load
dependent, making the technique less suitable to regression
testing where the goal is to find anomalies that are caused
by application change rather than workload change [4].

Furthermore, Mi et al [12] has described an interesting
approach to analyze the regression test data using application
signatures. This approach relies on calculating the service
demand of a transaction on the CPU of the application
server and assumes this service demand will not change
unless changes have been made to the program that caused
a performance regression. This effort uses intrusive probes
on the J2EE container to calculate service demands. Also
it is not extendable to multi-tiers applications as well as
to resources other than CPU utilization like disk I/O and
Network.

Calculating TP from the output of load runs, which
include the response time and resources utilization, has
been discussed in many papers. Among those, Casale et al
[6] have described how to do a linear regression between
resource utilization and workload (multiple runs with various
workloads are required) and use this relation to calculate the
TP. While Kraft et al [7] have followed a similar approach
but uses the response time instead of the resource utilization.
However, these two approaches would only be suitable to
calculate TP in simple deployments due to the single node
assumption, and they require multiple runs with multiple
loads.

VI. CONCLUSION

Our results show that TP is capable of being used as
a good load-independent representation of performance of
software systems. The TP approach can be used in perfor-
mance regression testing to detect and analyse anomalies.
Because this approach has been designed as an automated
and load independent solution, the amount of time and
efforts can be significantly reduced especially when testing
with different loads is required. Clearly, this approach will
significantly improve the test process by reducing testing
time for multiple workloads and by improving the informa-
tion fed back to developers about performance regressions.

Our future work will prove the validity of the approach
using real multi-tier applications with different kinds of
hardware resources. We also plan to study the effect of
software resources like RAM and threads on the model to
get a more accurate TP.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software
Engineering Research Centre (www.lero.ie).

REFERENCES

[1] Jiang, Z. M. 2010. Automated analysis of load testing results.
In Proceedings of the 19th international symposium on Software
testing and analysis. ACM, New York, NY, USA.

[2] Nguyen, T. H. D. 2012. Using control charts for detecting
and understanding performance regressions in large software.
In Proceedings of the 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation. IEEE Computer
Society, Washington, DC, USA.

[3] Nguyen, T. H., Adams, B., Jiang, Z. M., Hassan, A. E.,
Nasser, M., and Flora, P. 2012. Automated detection of perfor-
mance regressions using statistical process control techniques.
In Proceedings of the third joint WOSP/SIPEW international
conference on Performance Engineering. New York, NY, USA.

[4] Bereznay, F. M. 2006. Did something change? using statistical
techniques to interpret service and resource metrics. In 32nd
International Computer Measurement Group Conference, De-
cember 3-6, 2006, Reno, Nevada, USA, Proceedings. Computer
Measurement Group.

[5] Grinshpan, L. 2012. Solving Enterprise Applications Perfor-
mance Puzzles. John Wiley and Sons, Inc., Hoboken, New
Jersey.

[6] Casale, G., Cremonesi, P., and Turrin, R. 2008. Robust
workload estimation in queueing network performance models.
In Proceedings of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008). IEEE
Computer Society, Washington, DC, USA.

[7] Kraft, S., Pacheco-Sanchez, S., Casale, G., and Dawson, S.
2009. Estimating service resource consumption from response
time measurements. In Proceedings of the Fourth International
ICST Conference on Performance Evaluation Methodologies
and Tools. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), ICST, Brus-
sels, Belgium, Belgium.

[8] Bertoli, M., Casale, G., and Serazzi, G. 2009. Jmt: performance
engineering tools for system modeling. SIGMETRICS Perform.
Eval. Rev. 36, 4, 10–15.

[9] Ghaith, S. and Ó Cinnéide, M. 2012. Improving software
security using search-based refactoring.

[10] Parsons, T., Mos, A., and Murphy, J. 2006. Non-intrusive end
to end run-time pathtracing for j2ee systems. In IEE Proceedings
- Software, 153 (4) 149-161.

[11] Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou,
Y., and Flora, P. 2010. Mining performance regression testing
repositories for automated performance analysis. In Proceedings
of the 2010 10th International Conference on Quality Software.
IEEE Computer Society, Washington, DC, USA.

[12] Mi, N., Cherkasova, L., Ozonat, K. M., Symons, J., and
Smirni, E. 2008. Analysis of application performance and
its change via representative application signatures. In NOMS
(2008-12-10). IEEE.

Cop
y R

igh
ts 




